If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5-6t^2+6t=0
a = -6; b = 6; c = +1.5;
Δ = b2-4ac
Δ = 62-4·(-6)·1.5
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{2}}{2*-6}=\frac{-6-6\sqrt{2}}{-12} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{2}}{2*-6}=\frac{-6+6\sqrt{2}}{-12} $
| p-5=40 | | 18.95+0.84x=179.39 | | 18.95+0.84x=79.39 | | -2=n+6 | | 100=-x(x)+25x | | 4(2a+9)=5(a+15) | | 30-6x3x+30=180 | | 1/2(-24-16)-5m=43 | | 180=33+124+x | | 2×+21y=105 | | w+3/4=11/4 | | 52x-32+x+60+46=180 | | 9c-21=6 | | 5(-4+x)+10x=-5x | | 45+4xx-84=180 | | 8.35x=6.35x+10.4 | | 4(m-5)+3=-41 | | 5x6x=300 | | m÷100=47 | | 13x+204x-65=360 | | 6u+8+2(5u+4)=-2(u+3) | | 12/24=x/12 | | 5x−2(x−2)=−7+5x+3 | | 13x-204x-65=360 | | 3.1+t=4.2 | | 9x+3=—33 | | 17x-4-5x+40=180 | | 0=x^2+5x-40x | | 3(v+9)=-7(2v-6)+7v | | 4(x−3)=56 | | -9-1(9y-6)=3(4y+6) | | 18i+2(i-2)=-24 |